サイト内検索


登録済み会員ログイン




未登録の方はこちらから登録できます。
新規会員登録


ご利用案内

ご利用案内


連絡先

TEL.03-5812-5270
FAX.03-3831-0495
E-mail:info@spi-information.com


関連サイト・サービス

市場調査のご依頼、専門分野のイベント・フォーラムの開催などは シード・プランニングにて承っております。

シードプランニング

世界の医療・医薬品産業レポートのデータベースサービスは、sekairyo.comにてご利用いただけます。

sekairyo.com

医療従事者へのあらゆる形態の調査は、メドサークルにお任せ下さい。

メドサークル


セキュリティについて

当サイトのコンテンツ利用時に送信される機密情報は、Verisign認証の元暗号化されて送信されます。


Global Induced Pluripotent Stem Cell (iPS Cell) Industry Report 2020

世界の人工多能性幹細胞(iPS細胞)業界レポート2020

レポート概要

人工多能性幹細胞(iPSC)の発見以来、細胞は議論の余地がなく、成体細胞から直接生成することができるため、大きくて繁栄している研究製品市場が存在するようになりました。この細胞型を商品化する方法は毎年拡大しており、iPSCを調査する臨床研究の数は急増しているため、iPSCが有利な市場セグメントであることは明らかです。

近年、iPSCの治療への応用が急増しています。日本の神戸の理研センターで開始されたヒトへのiPSCの移植など、最初の細胞療法により、2013年は日本の画期的な年となりました。高橋政代氏率いる理化学研究所多細胞システム形成研究センター(CDB)は、黄斑変性症患者におけるiPSC由来細胞シートの安全性を調査しました。別の世界初の例として、Cynata Therapeutics社は、GvHDの治療のための同種異系iPSC由来細胞製品(CYP-001)の世界初の正式な臨床試験を開始する承認を2016年に得ました。Fate Therapeutics社はCAR-T分野に勢いをつけ、既存のiPSC由来のCAR-T細胞製品候補であるFT819を開発しています。iPSCを使用した医師主導の研究も数多く行われており、日本では、基礎および応用iPSC適用の主要国です。

iPS細胞市場の競合

今日、FUJIFILM CDI社は、iPSCセクター内で最大の商用プレーヤーの1つとして浮上しています。FUJIFILM CDI社は、2004年にウィスコンシン大学マディソン校のJames Thomson博士によって設立され、彼は2007年に初めてヒトの体細胞からiPSC系統を導き出しました。この偉業は、山中伸弥博士の日本の研究室によって同時に達成されました。

2009年、東京大学と京都大学を起点とするベンチャー企業として設立されたReproCELL社は、ヒトiPSC由来の心筋細胞であるReproCarioの上市により、初めてiPSC製品を商品化しました。

iPSC市場におけるヨーロッパのリーダーはNcardia社であり、Axiogenesis社とPluriomics社の合併によって誕生しました。2001年に設立されたAxiogenesis社は、当初はマウス胚性幹細胞由来の細胞とアッセイの生成に重点を置いていましたが、山中氏のiPSCテクノロジーが利用可能になった後、2010年にライセンスを取得した最初のヨーロッパ企業となりました。Ncardia社の焦点は、ヒトの神経および心臓細胞を使用した機能アッセイの開発を通した前臨床の創薬と薬物の安全性です。

現在、合計で少なくとも68の異なる市場競合他社が、さまざまなタイプのiPSC製品、サービス、テクノロジー、および治療法を提供しています。

iPS細胞の商業化

人工多能性幹細胞(iPSC)を商品化する方法は多様で、拡大を続けています。iPSC細胞適用には、以下が含まれますが、これらに限定されません。

  • 研究製品:研究製品:市場の競合他社は、ヒトiPSC株や分化細胞タイプ、最適化された試薬、プロトコル、分化キットなど、iPSC固有のツールを世界中の科学者に提供しています。
  • 医薬品開発&創薬:iPSCは、化合物の同定、ターゲットの検証、化合物のスクリーニング、およびツールの発見に生理学的に関連する細胞を提供することにより、創薬を変革する可能性を秘めています。
  • 細胞療法:iPSCは、怪我または疾患を逆転させる目的で、さまざまな範囲の細胞療法アプリケーションで探索されています。
  • 毒性スクリーニング:iPSCは毒性スクリーニングに使用でき、これは、幹細胞またはその誘導体(組織特異的細胞)を使用して、生細胞内の化合物または薬物の安全性を評価します。
  • オーダーメイド医療:CRISPRなどの技術を使用すると、多くの細胞型でノックアウトとノックイン(単一塩基の変化を含む)を正確に指示された方法で作成できます。iPSCとゲノム編集技術の組み合わせにより、オーダーメイド医療に新たな側面が加わりました。
  • 疾患モデリング:疾患モデリング:対象となる疾患のある患者からiPSCを生成し、それらを疾患固有の細胞に区別することにより、iPSCは「皿の中で」疾患モデルを効果的に作成できます。
  • 幹細胞バンク: PSCリポジトリは、健康なドナーと病気のドナーの両方から生産されたiPSC由来の細胞タイプを使用して、さまざまな条件を調査する機会を研究者に提供します。
  • その他の適用:PSCの他の適用には、組織工学、3Dバイオプリンティング、培養肉の生産、野生生物の保護などの分野が含まれます。

2006年にiPSCテクノロジーが発見されて以来、幹細胞生物学と再生医療は大きく進歩しました。新しい病理学的メカニズムが特定および解明され、iPSCスクリーンによって特定された新薬がパイプラインにあり、ヒトiPSC由来の細胞タイプを使用する最初の臨床試験が開始されました。本レポートは、iPSCベースの治療法の開発のためのiPSC研究、特許、資金調達イベント、業界パートナーシップ、生物医学的適用、テクノロジー、臨床試験の現在の状況を明らかにします。さらに、適用、テクノロジー、細胞タイプ、および地理(北米、ヨーロッパ、アジア/太平洋、およびその他)別のiPSCの包括的な市場規模の内訳、および2026年までの総市場規模と成長率も示しています。

一次および二次調査に加えて、以下のiPSC業界の著名なリーダーとのインタビューも実施しました。

  • Kaz Hirao, President and COO of FUJIFILM CDI
  • Dr. Ross Macdonald, CEO of Cynata Therapeutics
  • Robin Smith, CEO of ORIG3N
  • Dr. Paul Wotton, Board Member of Cynata Therapeutics

レポート詳細

目次

1. REPORT OVERVIEW
1.1 Statement of the Report
1.2 Executive Summary

2. INTRODUCTION
2.1 Discovery of iPSCs
2.2 Barriers in iPSC Application
2.3 Timeline and Cost of iPSC Development
2.4 Current Status of iPSCs Industry
2.4.1 The Share of iPSC-based Research in the Overall Stem Cell Industry
2.4.2 Major Focuses of iPSC Companies
2.4.3 Commercially Available iPSC-Derived Cell Types
2.4.4 Relative Use of iPSC-Derived Cell Types in Toxicology Testing Assays
2.4.5 Toxicology/Safety Testing Assays using iPSC-Derived Cell Types
2.5 Currently Available iPSC Technologies
2.6 Advantages and Limitations of iPSCs Technology

3. HISTORY OF INDUCED PLURIPOTENT STEM CELLS (IPSCS)
3.1 First iPSC generation from Mouse Fibroblasts, 2006
3.2 First Human iPSC Generation, 2007
3.3 Creation of CiRA, 2010
3.4 First High-Throughput screening using iPSCs, 2012
3.5 First iPSCs Clinical Trial Approved in Japan, 2013
3.6 The First iPSC-RPE Cell Sheet Transplantation for AMD, 2014
3.7 EBiSC Founded, 2014
3.8 First Clinical Trial using Allogeneic iPSCs for AMD, 2017
3.9 Clinical Trials for Parkinson’s disease using Allogeneic iPSCs, 2018
3.10 Commercial iPSC Plant SMaRT Established, 2018
3.11 First iPSC Therapy Center in Japan, 2019

4. RESEARCH PUBLICATIONS ON IPSCS
4.1 Categories of Research Publications
4.2 Percent Share of Published Articles by Disease Type
4.3 Number of Articles by Country

5. IPSCS: PATENT LANDSCAPE
5.1 Timeline and Status of Patents
5.2 Patent Filing Destinations
5.2.1 Patent Applicant’s Origin
5.2.2 Top Ten Global Patent Applicants
5.2.3 Collaborating Applicants of Patents
5.3 Patent Application Trends iPSC Preparation Technologies
5.4 Patent Application Trends in iPSC Differentiation Technologies
5.5 Patent Application Trends in Disease-Specific Cell Technologies

6. CLINICAL TRIALS INVOLVING IPSCS
6.1 Current Clinical Trials Landscape
6.1.1 Clinical Trials Involving iPSCs by Major Diseases
6.1.2 Clinical Trials Involving iPSCs by Country

7. FUNDING FOR IPSC
7.1 Value of NIH Funding for iPSCs
7.1.1 NHI’s Intended Funding Through its Component Organizations in 2020
7.1.2 NIH Funding for Select Universities for iPSC Studies
7.2 CIRM Funding for iPSCs

8. GENERATION OF INDUCED PLURIPOTENT STEM CELLS: AN OVERVIEW
8.1 Reprogramming Factors
8.1.1 Pluripotency-Associated Transcription Factors
8.1.2 Different Cell Sources and Different Combinations of Factors
8.1.3 Delivery of Reprogramming Factors
8.1.4 Integrative Delivery Systems
8.1.4.1 Integrative Viral Vectors
8.1.4.2 Integrative Non-Viral Vectors
8.1.5 Non-Integrative Delivery Systems
8.1.5.1 Non-Integrative Viral Vectors
8.1.5.2 Non-Integrative Non-Viral Delivery
8.2 Overview of Four Key Methods of Gene Delivery
8.3 Comparative Effectiveness of Different Vector Types
8.4 Genome Editing Technologies in iPSCs Generation

9. HUMAN IPSC BANKING
9.1 Cell Sources for iPSCs Banking
9.2 Reprogramming methods used in iPSC Banking
9.2.1 Factors used in reprogramming by Different Banks
9.3 Workflow in iPSC Banks
9.4 Existing iPSC Banks
9.4.1 California Institute for Regenerative Medicine (CIRM)
9.4.1.1 CIRM iPSC Repository
9.4.1.2 CIRMS’ Key Partnerships for iPSCs Repository
9.4.2 Regenerative Medicine Program (RMP)
9.4.2.1 Research Grade iPSC Lines for Orphan and Rare Diseases from RMP
9.4.2.2 RMP’s Stem Cell Translation Laboratory (SCTL)
9.4.3 Center for iPS Cell Research and Application (CiRA)
9.4.3.1 FiT: Facility for iPS Cell Therapy
9.4.4 European Bank for Induced Pluripotent Stem Cells (EBiPC)
9.4.5 Korean Society for Cell Biology (KSCB)
9.4.6 Human Induced Pluripotent Stem Cell Intitiative (HipSci)
9.4.7 RIKEN - BioResource Research Center (BRC)
9.4.8 Taiwan Human Disease iPSC Consortium
9.4.9 WiCell

10. BIOMEDICAL APPLICATIONS OF IPSCS
10.1 iPSCs in Basic Research
10.1.1 Understanding Cell Fate Control
10.1.2 Cell Rejuvenation
10.1.3 Studying Pluripotency
10.1.4 Tissue and Organ Development and Physiology
10.1.5 Generation of Human Gametes from iPSCs
10.1.6 Providers of iPSC-Related Services for Researchers
10.2 iPSCs in Drug Discovery
10.2.1 Drug Discovery for Cardiovascular Disease using iPSCs
10.2.2 Drug Discovery for Neurological and Neuropsychiatric Diseases
10.2.3 Drug Discovery for Rare Diseases using iPSCs
10.3 iPSCs in Toxicology Studies
10.3.1 Relative Use of iPSC-Derived Cell Types in Toxicity Testing
10.4 iPSCs in Disease Modeling
10.4.1 Cardiovascular Diseases Modeled with iPSCs
10.4.2 Percent Share Utilization of iPSCs for Cardiovascular Disease Modeling
10.4.3 Proportion of iPSC Sources in Cardiac Studies
10.4.4 Proportion of Vector Types used in Reprogramming
10.4.5 Proportion of Differentiated Cardiomyocytes used in Disease Modeling
10.4.6 iPSC-Derived Organoids for Modeling Development and Disease
10.4.7 Modeling Liver Diseases using iPSC-derived Hepatocytes
10.4.8 iPSCs in Neurodegenerative Disease Modeling
10.4.9 Cancer-Derived iPSCs
10.5 iPSCs in Cell-Based Therapies
10.5.1 Ongoing Clinical Trials using iPSCs in Cell Therapy
10.5.1.1 Clinical Trials for AMD
10.5.1.2 Autologous iPSC-RPE for AMD
10.5.1.3 Allogeneic iPSC-RPE for AMD
10.5.1.4 iPSC-Derived Dopaminergic Neurons for Parkinson’s disease
10.5.1.5 iPSC-Derived NK Cells for Solid Cancers
10.5.1.6 iPSC-derived Cells for GvHD
10.5.1.7 iPSC-derived Cells for Spinal Cord Injury
10.5.1.8 iPSC-derived Cardiomyocytes for Ischemic Cardiomyopathy
10.5.2 Leaders in iPSC-Based Cell Therapies

11. OTHER NOVEL APPLICATIONS OF IPSCS
11.1 iPSCs in Tissue Engineering
11.1.1 3D Bioprinting Techniques
11.1.2 Biomaterials
11.1.3 3D Bioprinting Strategies
11.1.4 Bioprinting Undifferentiated iPSCs
11.1.5 Bioprinting iPSC-Differentiated Cells
11.2 iPSCs in Animal Conservation
11.2.1 iPSC Lines for the Preservation of Endangered Species of Animals
11.2.2 iPSCs in Wildlife Conservation
11.3 iPSCs and Cultured Meat
11.3.1 Funding Raised by Cultured Meat Companies
11.3.4 Global Market for Cultured Meat

12. DEALS IN IPSCS SECTOR
12.1 $250 million Raised by Century Theraputics
12.2 BlueRock Therapeutics Launched with $225 Million
12.3 Collaboration between Allogene Therapeutics and Notch Therapeutics
12.4 Acquisition of Semma Therapeutics by Vertex Therapeutics
12.5 Evotec’s Extended Collaboration with BMS
12.6 Licensing Agreement between Allele Biotechnology and Astellas Pharma
12.7 Codevelopment Agreement between Allele & SCM Lifesciences
12.8 Fate Therapeutics Signs $100 Million Deal with Janssen
12.9 Allele’s Deal with Alpine Biotherapeutics
12.10 Editas and BlueRock’s Development Agreement

13. MARKET OVERVIEW
13.1 Global Market for iPSCs by Geography
13.2 Global Market for iPSCs by Technology
13.3 Global Market for iPSCs by Biomedical Application
13.4 Global Market for iPSCs by Cell Types
13.5 Market Drivers
13.6 Market Restraints
13.6.1 Economic Issues
13.6.2 Genomic Instability
13.6.3 Immunogenicity
13.6.4 Biobanking of iPSCs

14. COMPANY PROFILES
14.1 Addgene, Inc.
14.1.1 Viral Plasmids
14.2 Aleph Farms
14.3 Allele Biotechnology and Pharmaceuticals, Inc.
14.3.1 iPSC Reprogramming and Differentiation
14.4 AMS Biotechnology Europe, Ltd. (AMSBIO)
14.4.1 Services
14.4.2 Products
14.4.3 Corneal Epithelial Cells Cultured in StemFit in Clinical Trials
14.5 ALSTEM, INC.
14.5.1 Products
14.5.2 Services
14.6 Applied Biological Materials, Inc. (ABM)
14.6.1 Gene Expression Vectors and Viruses
14.7 Applied StemCell, Inc.
14.7.1 Services & Products
14.8 American Type Culture Collection (ATCC)
14.8.1 Product
14.9 Applied StemCell (ASC), Inc.
14.9.1 Products
14.10 Aruna Bio, Inc.
14.10.1 Program in Stroke
14.10.2 Exosomes as Therapeurics
14.11 Aspen Neuroscience, Inc.
14.11.1 Technology
14.12 Axol Bioscience, Ltd.
14.12.1 iPSC-derived Cells
14.12.2 Disease Models
14.12.3 Primary Cells
14.12.4 Media & Reagents
14.12.5 Services
14.13 Beckman Coulter Life Sciences
14.13.1 Cell Counters, Sizers and Media Analyzers
14.14 BD Biosciences
14.14.1 Products
14.15 BioCat GmbH
14.15.1 Products & Services
14.16 BlueRock Therapeutics
14.16.1 CELL + GENE Platform
14.17 BrainXell
14.17.1 Products
14.18 Cellaria
14.18.1 Product
14.19 Cell Biolabs, Inc.
14.19.1 Products
14.20 CellGenix GmbH
14.20.1 Products
14.21 Cell Signaling Technology
14.21.1 Products
14.22 Cellular Engineering Technologies (CET)
14.22.1 iPS Cell Lines
14.23 Cellular Dynamics International, Inc.
14.23.1 Products
14.24 Censo Biotechnologies, Ltd.
14.24.1 Human iPSC Reprogramming Services
14.24.2 iPSC Gene Editing Services
14.24.3 iPSC Target Validation and Assay Services
14.25 Century Therapeutics, LLC
14.25.1 Allogeneic Immune Cell Therapy
14.26 CiRA
14.26.1 Collaborations
14.27 Corning, Inc.
14.27.1 Products
14.28 Creative Bioarray
14.28.1 Products
14.29 Cynata Therapeutics Ltd.
14.29.1 Cymerus MSCs
14.30 Cytovia Therapeutics
14.30.1 iPSC CAR NK Cells
14.31 DefiniGEN
14.31.1 OptiDIFF iPSC Platform
14.31.2 Service
14.31.3 Patient-Derived Custom Cell Lines
14.31.4 Hepatocytes WT
14.31.5 Hepatocyte A1ATD
14.31.6 Hepatocyte GSD1a
14.31.7 Hepatocyte NAFLD
14.31.8 Hepatocyte FH
14.31.9 Pancreatic WT
14.31.10 Pancreatic MODY3
14.32 Fate Therapeutics, Inc.
14.32.1 iPSC Platform
14.32.2 Collaboration with ONO Pharmaceutical Co., Ltd.
14.32.3 Collaboration with Memorial Sloan-Kettering Cancer Center
14.32.4 Collaboration with University of California, San Diego
14.32.5 Collaboration with Oslo University Hospital
14.33 FUJIFILM Cellular Dynamics, Inc.
14.33.1 iCell Products
14.33.2 MyCell Products
14.33.3 FCDI’s Partners & Providers
14.33.4 Groundbreaking Cellular Therapy Applications
14.33.5 New Paradigm for Drug Discovery
14.33.6 FCDI & Stem Cell Banking
14.34 GeneCopoeia, Inc.
14.34.1 Products & Services
14.35 GenTarget, Inc.
14.35.1 Products
14.35.2 Services
14.36 Heartseed, Inc.
14.36.1 Technology
14.37 InvivoGen
14.37.1 Products
14.38 iPS Portal, Inc.
14.38.1 Services
14.39 iXCells Biotechnologies
14.39.1 Products
14.40 Lonza Group, Ltd.
14.40.1 Nucleofector Technology
14.41 Merck/Sigma Aldrich
14.41.1 Products
14.42 Megakaryon Corporation
14.42.1 Technology
14.43 Metrion Biosciences, Ltd.
14.43.1 Cardiac Translational Assays
14.44 Miltenyi Biotec B.V. & Co. KG
14.44.1 Cell Manufacturing Platform
14.45 Ncardia
14.45.1 iPSC Solutions for Cell Therapy
14.45.2 Drug Safety and Toxicity Services
14.46 NeuCyte
14.46.1 Technology
14.47 Newcells Biotech
14.47.1 Expertise
14.47.2 iPSC Reprogramming Services
14.47.3 Assay Products and Services
14.47.4 Assay Development
14.48 PeproTech
14.48.1 Products
14.49 Phenocell SAS
14.49.1 Human iPSCs
14.50 Platelet BioGenesis
14.50.1 Technology
14.51 Pluricell Biotech
14.51.1 Pluricell’s Projects
14.52 PromoCell GmbH
14.52.1 Products
14.53 Qiagen
14.53.1 Single Cell Analysis
14.54 R&D Systems, Inc.
14.54.1 Products
14.55 ReproCELL
14.55.1 Services
14.55.2 Products
14.56 STEMCELL Technologies
14.56.1 Products
14.57 Stemina Biomarker Discovery
14.57.1 Cardio quickPredict
14.57.2 devTOX quickPredict
14.58 Synthego Corp.
14.58.1 CRISPR-Edited iPSCs
14.59 System Biosciences (SBI)
14.59.1 Products
14.60 Takara Bio
14.60.1 Stem Cell Research Products
14.61 Takeda Pharmaceutical Co., Ltd.
14.61.1 Collaboration between CiRA and Takeda
14.61.2 FUJIFILM’s Collaboration with Takeda
14.62 Tempo Bioscience
14.62.1 Human Cell Models
14.63 Thermo Fisher Scientific, Inc.
14.63.1 Products for Stem Cell Culture
14.63.2 Products for Stem Cell Characterization
14.63.3 Products for Stem Cell Engineering
14.64 TreeFrog Therapeutics
14.64.1 C-Stem Technology
14.65 VistaGen Therapeutics, Inc.
14.65.1 CardioSafe 3D
14.66 Waisman Biomanufacturing
14.66.1 GMP iPSCs
14.67 xCell Science, Inc.
14.67.1 Control Lines
14.67.2 Products
14.67.3 Services
14.68 Yashraj Biotechnology, Ltd.
14.68.1 Products and Services for Drug Discovery

INDEX OF FIGURES
FIGURE 2.1: Share of iPSC-related Research Compared with other Stem Cell Types
FIGURE 2.2: Major Focuses of iPSC Companies
FIGURE 2.3: Commercially Available iPSC-Derived Cell Types
FIGURE 2.4: Relative Use of iPSC-Derived Cell Types in Toxicology/Safety Testing Assays
FIGURE 2.5: Toxicology/Safety Testing Assays using iPSC-Derived Cell Types
FIGURE 3.1: CiRA’s Budget of \6.37 Billion
FIGURE 4.1: Number of Research Publications on iPSCs in PubMed.gov, 2006-2020
FIGURE 4.2: Percent Share of Published Articles by Research Themes
FIGURE 4.3: Percent Share of Published Articles by Disease Type
FIGURE 4.4: Percent Share of iPSC Research Publications by Country
FIGURE 5.1: Number of Patents Granted, Being Sought and “Dead”
FIGURE 5.2: Patent Families by Filing Jurisdiction
FIGURE 5.3: Patent Families by Applicant Origin
FIGURE 5.4: Top Ten Global Applicants
FIGURE 5.5: Top Ten Global Collaborators on PSC/iPSC Patents
FIGURE 5.6: Share of Patents on iPSC Preparation Technologies by Geography
FIGURE 5.7: Percent Share of iPSC Preparation Methods in the U.S., Japan & Europe
FIGURE 5.8: Percent Share of Patents Related to Cell Types Differentiated from iPSCs
FIGURE 5.9: Percent Share of Patent Applications for Disease-Specific Cell Technologies
FIGURE 5.10: Percent Share of Patents Representing Different Disorders
FIGURE 6.1: Number of Clinical Trials Involving iPSCs by Year, 2006-2020
FIGURE 6.2: Clinical Trials Involving iPSCs by Major Diseases
FIGURE 6.3: Clinical Trials Involving iPSCs by Country
FIGURE 7.1: Number of NIH Funding for iPSC Projects, 2010-2020
FIGURE 7.2: Value of NIH Funding for iPSCs by Year, 2010-2020
FIGURE 8.1: Overview of iPSC Technology
FIGURE 8.2: Generation of iPSCs from MEF Cultures through 24 Factors by Yamanaka
FIGURE 8.3: The Roles of OSKM Factors in the Induction of iPSCs
FIGURE 8.4: Schematic Representation of Delivery Methods for iPSCs Induction
FIGURE 8.5: Overview of Four Key Methods of Gene Delivery
FIGURE 9.1: Workflow in iPSC Banks
FIGURE 10.1: Biomedical Applications of iPSCs
FIGURE 10.2: Relative Use of iPSC-Derived Cell Types in Toxicity Testing
FIGURE 10.3: A Schematic for iPSC-Based Disease Modeling
FIGURE 10.4: Proportion of iPS Cell Lines Generated by Disease Type
FIGURE 10.5: Proportion of iPSC Sources in Cardiac Studies
FIGURE 10.6: Proportion of Vector Types used in Reprogramming
FIGURE 10.7: The Proportion of Differentiated Cardiomyocyte Types
FIGURE 10.8: Schematic for iPSC-Based Cell Therapy
FIGURE 11.1: Schematic Representation of Printing Techniques used for iPSC Bioprinting
FIGURE 11.2: Schematic Showing the use of iPSCs in Protecting Endangered Species
FIGURE 11.3: Funding raised by Cultured Meat Companies
FIGURE 11.4: Estimated Global Market for Cultured Meat, 2023-2030
FIGURE 13.1: Estimated Global Market for iPSCs by Geography through 2026
FIGURE 13.2: Estimated Global Market for iPSCs by Technology through 2026
FIGURE 13.3: Estimated Global Market for iPSCs by Biomedical Application through 2026
FIGURE 13.4: Estimated Global Market Share for Differentiated Cell Types, 2020
FIGURE 14.1: Comparison of Conventional Meat Production and Cultured Meat Production

INDEX OF TABLES
TABLE 2.1: Commercially Available iPSC Technologies
TABLE 2.2: Advantages and Limitations of iPSC Technology
TABLE 3.1: Timeline of the Most Important Milestones in iPSC Research, 2006-2019
TABLE 4.1: Number of Research Publications on iPSCs in PubMed.gov, 2006-2020
TABLE 5.1: Patent Families by Filing Jurisdiction
TABLE 5.2: Patents Granted and Patents Pending in the Global Patent Landscape
TABLE 6.1: Clinical Trials involving iPSCs as of March 2020
TABLE 6.1: (CONTINUED)
TABLE 6.1: (CONTINUED)
TABLE 6.1: (CONTINUED)
TABLE 6.1: (CONTINUED)
TABLE 6.1: (CONTINUED)
TABLE 6.1: (CONTINUED)
TABLE 7.1: NHI’s Intended Funding Through its Component Organizations in 2020
TABLE 7.2: NIH Funding for Select Universities/Organizations for iPSC Studies
TABLE 7.2: (CONTINUED)
TABLE 7.3: CIRM Funding for Clinical Trials Involving iPSCs
TABLE 7.3: (CONTINUED)
TABLE 8.1: The Characterization of iPSCs
TABLE 8.2: Reprogramming Factors used in the Generation of iPSCs
TABLE 8.3: Different Cell Sources and Different Combinations of Reprogramming Factors
TABLE 8.1: Comparative Effectiveness of Different Vector Types
TABLE 8.2: iPSC Disease Models using Isogenic Control Lines Generated by CRISPR/Cas9
TABLE 8.2: (CONTINUED)
TABLE 9.1: Cell Sources and Reprogramming Agents used in iPSCs Banks
TABLE 9.2: Diseased iPSC Lines Available in CIRM Repository
TABLE 9.3: CIRMS’ iPSC Initiative Awards
TABLE 9.4: Research Grade iPSCs Available with RMP
TABLE 9.5: Research Grade iPSC Lines for Orphan and Rare Diseases Available with RMP
TABLE 9.6: SCTL’s Collaborations
TABLE 9.7: A Partial List of iPSC Lines Available with EBiPC
TABLE 9.8: List of Disease-Specific iPSCs Available with RIKEN
TABLE 9.8: (CONTINUED)
TABLE 9.8: (CONTINUED)
TABLE 9.9: An Overview of iPSC Banks Worldwide
TABLE 10.1: Providers of iPS Cell Lines and Parts Thereof for Research
TABLE 10.2: Comparison of hiPSC-Based & Animal-Based Drug Discovery
TABLE 10.3: Drug Discovery for Cardiovascular Diseases using iPSCs
TABLE 10.3: (CONTINUED)
TABLE 10.4: Drug Discovery for Neurological and Neuropsychiatric Diseases using iPSCs
TABLE 10.4: (CONTINUED)
TABLE 10.5: Drug Discovery for Rare Diseases using iPSCs
TABLE 10.5: (CONTINUED)
TABLE 10.6: Examples of Drug testing in iPSC-Derived Disease Models
TABLE 10.6: (CONTINUED)
TABLE 10.7: Published Human iPSC Disease Models
TABLE 10.7: (CONTINUED)
TABLE 10.7: (CONTINUED)
TABLE 10.7: (CONTINUED)
TABLE 10.7: (CONTINUED)
TABLE 10.8: Partial List of Cardiovascular and Related Diseases Modeled with iPSCs
TABLE 10.9: iPSC-Derived Organoids for Modeling Development and Disease
TABLE 10.10: Liver Diseases and Therapeutic Interventions Modeled using iPSCs
TABLE 10.10: (CONTINUED)
TABLE 10.11: Examples of iPSC-Based Neurodegenerative Disease Modeling
TABLE 10.11: (CONTINUED)
TABLE 10.11: (CONTINUED)
TABLE 10.11: (CONTINUED)
TABLE 10.12: Cancer-Derived iPSCs
TABLE 10.13: Clinical Trials for the Therapeutic Application of iPSC Derivatives
TABLE 10.13: (CONTINUED)
TABLE 10.14: U.S. Clinical Trials Involving iPSCs
TABLE 10.14: (CONTINUED)
TABLE 11.1: Features of Different Bioprinting Techniques
TABLE 11.2: Bioprinting of iPSC-Derived Tissues
TABLE 11.3: Timeline of Achievements Made using iPSCs for Conservation of Animals
TABLE 11.14: Companies Working on Meat Production based on Cellular Agriculture
TABLE 13.1: Estimated Global Market for iPSCs by Geography, 2019-2026
TABLE 13.2: Estimated Global Market for iPSCs by Technology, 2019-2026
TABLE 13.3: Estimated Global Market for iPSCs by Biomedical Application, 2019-2026
TABLE 13.4: Estimated Global Market for iPSCs by Differentiated Cell Types, 2019-2026
TABLE 14.1: iPS Cell Lines from CET

発刊日

2020/05/08

体裁

PDF / 238ページ

販売価格

3,997USD

発行

BioInformant

備考

※ご請求は、お申込日のTTSレートで円換算し、消費税を加えた金額になります。
※販売価格はシングルユーザーライセンスのものとなります。他のライセンス形態・価格に関しましてはご相談下さい。
※本レポートは、英文です。PDF(電子媒体)での納品となります。
※本レポートは取り寄せとなりますので、申し込みからお届けまで、多少時間が掛かる場合がございます。

関連カテゴリ

バイオ・ゲノム・再生医療

購入・お問い合わせ

このレポートを購入

詳細を問い合わせる


PAGE